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a b s t r a c t

The Survivor Interaction Contrast (SIC) is a distribution-freemeasure for assessing the fundamental prop-
erties of human information processing such as architecture (i.e., serial or parallel) and stopping rule
(i.e., minimum time or maximum time). Despite its demonstrated utility, there are some vital gaps in
our knowledge: first, the shape of the serial maximum time SIC is theoretically unclear, although the one
0-crossing negative-to-positive signature has been found repeatedly in the simulations. Second, the the-
ories of SIC have been restricted to two-process cases, which restrict the applications to a limited class of
models and data sets. In this paper, we first prove that in the two-process case, a mild condition known as
strictly log-concavity is sufficient as a guarantor of a single 0-crossing of the serial maximum time SIC.We
then extend the definition of SIC to an arbitrary number of processes, and develop implicated methodol-
ogy of SIC in its generalized form, again in a distribution-free manner, for both parallel and serial models
in conjunction with both the minimum time and maximum time stopping rules. We conclude the paper
by demonstrating application of the theorems to data from a short-term memory search task.

Published by Elsevier Inc.
1. Introduction

The question of whether people can perform multiple percep-
tual or mental operations simultaneously, that is, parallel process-
ing, vs. whether items or tasks must proceed serially (one at a
time), has intrigued psychologists since the birth of experimen-
tal psychology. Historically, reaction time (RT) has been the pri-
mary measure on this question. The work of the physiologist F.C.
Donders (e.g., Donders, 1868) was seminal in this regard, although
other researchers, such as W. Wundt, were more prolific with re-
gard to early results on human cognition.

With the revolution brought about through cognitive science
and cognitive psychology in the 1950s and 1960s, questions such
as the parallel vs. serial conundrum, which had lain dormant since
the nineteenth century saw a renaissance of interest.
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The serial vs. parallel topic is our primary concern here. How-
ever, it may be worth a moment’s pondering, given the pioneering
role of William K. Estes in the advent of mathematical psychol-
ogy, of how the latter field, and Estes’ research, fit into, and con-
tributed to, modern cognitive psychology. Three tributaries fed the
new stream of mathematical psychology in the 1950s and 60s.
These were: 1. Signal detection theory, child of psychophysics and
sensory processes, mathematical communications theory, applied
physics, and statistical decisionmaking (e.g., Green & Swets, 1966;
Tanner & Swets, 1954). 2. Foundationalmeasurement the offspring
of S.S. Stevens’ brilliant but non-rigorous statements concern-
ing measurement in psychology fostered and rendered rigorous
through strands from philosophy, mathematical logic and abstract
algebra (e.g., Krantz, Luce, Suppes, & Tversky, 1971; Roberts &
Zinnes, 1963). 3. Mathematical learning theorywhichwent back at
least to Clark Hull (e.g., Hull, 1952); or see Koch’s elegant summary
in Modern Learning Theory (Koch, 1954). This branch is where we
find the Estes trailblazing Stimulus Sampling Theory (Estes, 1955,
1959), a precise, quantitative theory of human and animal learning.
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This theory,which still impacts awide spectrumof research in cog-
nition today, led to a score of research advances by Estes and col-
leagues as well as a host of other scientists (e.g., Atkinson & Estes,
1963; Friedman et al., 1964).

Estes was an early entrant into the embryonic cognitive move-
ment. His research in this domain was likely influenced by the
burgeoning efforts utilizing the information processing approach,
perhaps the early dominant theme in this new domain. Early pio-
neers includedWendell Garner (e.g., Garner, 1962), Donald Broad-
bent (e.g., Broadbent, 1958), William Hick (e.g. Hick, 1952), and
Colin Cherry (e.g. Cherry, 1953) (note the heavy presence of British
psychologists).

American psychologists were soon contributing to this rapidly
expanding field which bridged sensory processes, higher percep-
tion, and elementary cognition. Prime examples are Charles Erik-
sen (e.g., Eriksen & Spencer, 1969), Michael Posner (e.g., Posner,
1978), Raymond Nickerson (e.g., Nickerson, 1972), Ralph Haber
(e.g., Haber & Hershenson, 1973), and Howard Egeth (e.g., Egeth,
1966). And, Bill Estes of course.

The employment of ingenious experimental designs to answer
questions concerning whether humans perform visual or mem-
ory search in a serial or parallel fashion provide apt examples of
new trends making an appearance in the 60s and 70s. (e.g., Sper-
ling, 1960, 1967; Sternberg, 1966, 1975). Estes and colleagues pro-
vided some classic early results in this domain in extending, and
mathematicallymodeling extensions of Sperlings innovative visual
search experimental designs. For instance, Estes and Taylor (1964)
developed a new detection method as well as associated models
in this vein. Also, Estes and Taylor (1966) and Estes and Wessel
(1966)were beginning to explore phenomena andhuman informa-
tion processing mechanisms related to the presence of redundant
signals in visual displays.

The Sternberg (1966) innovative and rather startling RT data in
short termmemory search, in particular, had a profound influence
on thinking in the parallel vs. serial processing literature. In fact, a
massive body of experimental literature over several decades has
been based on the inference that increasing, more-or-less straight-
line RT functions of the workload n,1 the number of comparisons
to perform, imply serial processing. However, the ability of lim-
ited capacity parallel models to mimic serial models, in the strong
sense of mathematical equivalence, was demonstrated relatively
early on (e.g., Atkinson, Holmgren, & Juola, 1969; Murdock, 1971;
Townsend, 1969, 1971).2 And in fact, the reverse possibility of se-
rial models to mimic parallel models was also proven (Townsend,
1969, 1971, 1972, 1974). The early mathematical results were con-
fined to limited types of RT distributions, but later developments
extended to arbitrary probability distributions (Townsend, 1976;
Townsend & Ashby, 1983; Vorberg, 1977).

The parallel models which perfectly mimic serial models are
limited capacity in the sense that their processes degrade in their ef-
ficiency as the workload n increases. Suchmodels intuitively make
the predictions associated with serial processing, specifically the
linear RT graphs of the workload n (e.g., Townsend, 1971). Fortu-
nately, theory-driven experimental methodologies have been in-
vented in recent years that are considerably more robust in the

1 An increment in workload is usually natural to define in terms of number of
dimensions, or subtasks involved in some task. We shall often refer simply to items
or, sometimes, processes as generic tags for the discrete objects being processed or
the conduits working on them. The unit of workload typically relates in a natural
fashion to the task. For example, if a memory search task involves examination of a
list of letters, the unitmay bemade straightforwardly in terms of letters. Then nmay
stand for both the workload in the task and the number of letters in the memory
set.
2 For an up to date review of the parallel–serial identifiability issue, see

Townsend, Yang, and Burns (2011).
assessment of mental architecture, particularly serial vs. parallel
processing (Scharff, Palmer, &Moore, 2011; Townsend, 1976, 1981,
1990a; Townsend & Nozawa, 1995; Townsend &Wenger, 2004). In
particular, the new methodologies often allow architectural infer-
ences even though the workload is held constant, so that capacity
does not confound architectural inferences.

Our focus here lies within the general approach referred to as
Systems Factorial Technology (hereafter SFT; see Townsend, 1992;
Townsend & Nozawa, 1995). A number of investigators have made
essential contributions to this literature including Schweickert and
Dzhafarov and colleagues (Dzhafarov, 1997; Dzhafarov, Schwe-
ickert, & Sung, 2004; Schweickert, 1978, 1982; Schweickert &
Giorgini, 1999; Schweickert, Giorgini, & Dzhafarov, 2000). SFT re-
lies heavily onmathematical propositions indicating experimental
conditions where strong tests of architectures may be found, al-
though other testable features, such as capacity, are also encom-
passed presently. The bulk of theoretical work has been performed
under the assumption of selective influence. Our scope prohibits de-
tails here, butwe can loosely define selective influence as the prop-
erty that certain experimental factors act only on specific processes
in the overall system (see Section 2.1 for more detailed discussion
on selective influence). When selective influence is in force, pre-
dictions of serial and parallel models and the pertinent decisional
stopping rules are strikingly distinct. This paper is intended to sig-
nificantly strengthen and extend these predictions.

SFT requires the survivor function S(t), which is simply the
complement of the well-known cumulative distribution (or fre-
quency) function (the CDF) written as F(t). That is, S(t) = 1−F(t).
A central statistical diagnostic is then the survivor interaction con-
trast (or SIC) function. It performs a double difference contrast op-
eration on the survivor functions that is analogous to the mean
interaction contrast (orMIC) employed on the arithmetic RTmeans
in earlier investigations (e.g., Schweickert, 1978; Sternberg, 1966).
However, it now expresses a highly diagnostic function of time,
rather than a single number.

Despite the successful deployment of the SICmeasure, there are
some vital gaps in our knowledge, restricting the applications to a
limited class ofmodels and data sets. Thesewill be sketchedwithin
a brief presentation of relevant knowledge we do have.

We know that, for n = 2, serial minimum time models predict
perfectly flat signatures whereas serial maximum time (i.e., the
classical exhaustive processing time stopping rule; see Sternberg,
1969; Townsend, 1974) predictions must include at least one wig-
gle (i.e., the up-and-down excursions marked by 0-crossings) be-
low and above 0 (Townsend & Nozawa, 1995). However, although
simulations have intimated that there is a single wiggle passing
through 0, in a negative-to-positive direction as exhibited in Fig. 1
(the top right panel), this has not been shown to be true for all dis-
tributions. In fact, the exact shape of the SIC curve is as yet un-
known.

Therefore, in elucidating further properties of serial exhaustive
processing: A. We first prove that serial exhaustive processing in-
evitably predicts an odd number of 0-crossings in the n = 2 case.
B. Next, we show that a certain readily-met mathematical condi-
tion is sufficient to force the behavior indicated through our simu-
lations, a single 0-crossing of the SIC function.

The behavior our SIC signatures have also remained unidenti-
fied for n > 2, in the case of all studied serial and parallel processes
up to now. The quite intriguing behaviors in the case of the serial
and parallel models with varying stopping rules, and for arbitrary
values of n, are next developed for: A. Serial minimum time pro-
cessing. B. Serial maximum time processing. C. Parallel minimum
time processing. D. Parallel maximum time processing.

Successful completion of the above goals should significantly
expand the possibilities of application. Since mathematical details
of SFT in general, have been published elsewhere (e.g., Townsend &
Nozawa, 1995) and tutorials are available (e.g., Townsend, Fific, &
Neufeld, 2007; Townsend &Wenger, 2004; Townsend et al., 2011),
only the bare bones SFT can be displayed here.
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Fig. 1. Representative predictions of survivor interaction contrast (SIC) and mean interaction contrast (MIC) across different architectures and stopping rules. The four
canonical models on the left are based on simulations of gamma distributions, with various shape parameters regarding different salience levels of processes. The coactive
model on the right is based on simulations of dynamic systems described in (Townsend &Wenger, 2004).
Fig. 2. Distributional influences of the high vs. low salience manipulation with survivor functions (right) and densities suggesting satisfaction of the one point crossover
(left). The simulations are based on gamma distributions with different shape parameters.
2. Extending knowledge of serial exhaustive processing: analy-
sis for two processes

2.1. Underlying assumptions of SFT

The critical assumption underlying SFT is selective influence,
which means that an experimental factor affects only a single pro-
cess. We continued the convention (Townsend & Ashby, 1983) of
indicating the level of a factor as high if it speeds up the process and
as low when it slows down the process. Manipulating the speed
of the process is also referred to as salience manipulation. In the
short-term memory search task shown in the exemplar experi-
ment section, for instance, high dissimilarity between the item in
the memory and the target will be designated as a high salience
level, and low dissimilarity between item and target will be desig-
nated as a low salience level.

In terms of RT distribution, an experimental variable acting se-
lectively could in principle affect any one ormore of several aspects
of an RT distribution. In this paper we follow the assumption as ex-
pressed in Townsend and Nozawa (1995) that the two processing
time density functions for a single process, at the two factor levels
cross exactly once, i.e., there is exactly one time t∗, where the two
density functions are equal. This assumption implies an ordering
of both survivor functions (i.e. stochastic dominance) aswell as the
means andmedians. This assumption appears to be satisfiedwithin
the limits of typical psychological applications (e.g., Townsend,
1990b; Townsend & Nozawa, 1995). Fig. 2 shows a hypothetical
example of selective influence operating at the one-point density
crossover level, using two gammadistributed variables.We can see
that the property of single density crossover (left panel) leads to
both an ordering of the survivor functions (right panel) and of the
mean processing times (right panel, the area under the survivor
curves).

In order to avoid possible failure of selective influence due to in-
direct non-selective influence, i.e., one factor can indirectly affect
the ‘wrong’ process through stochastic dependence (Townsend,
1984; Townsend & Thomas, 1994), some condition concerning
stochastic independence is typically required. For simplicity of
proof, stochastic independence of the process completion times
is assumed, although Dzhafarov (1999, 2003) and Dzhafarov et al.
(2004) has shown that conditional independence given some com-
mon sources of randomness which are unaffected by the experi-
mental factors is sufficient for these purposes.3

Therefore, not onlymust selective influence act at a level of suf-
ficient power on a process X (e.g., the density single point crossing
assumption above), but itmust be assumed that themarginal prob-
ability functions on processing times for all other processes Y , Z ,
etc.must be invariantwhen the X factor ismanipulated. Base times
(all else besides the completion times of the processes in whichwe
are interested) are avoided in this study but under the assumption
of conditional independence, would not affect our results in any
event.

3 See Kujala and Dzhafarov (2008) for recent advances pertaining to selective
influence.
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2.2. Limited review of systems factorial technology

Suppose we are concerned with just two processes or channels.
We refer to these as X and Y . Let fXL(t) be the density function
of the processing time on X when the factor level of process X is
low and fXH(t) be the density function of the processing time on X
when the factor level is high. Likewise, let fYL(t) and fYH(t) be the
density functions of the processing time on Y when the factor level
of Y is low and high, respectively. In this paper we assume that all
density functions are sufficiently smooth.4 Let SXL(t), SXH(t), SYL(t)
and SYH(t) denote the survivor functions corresponding to fXL(t),
fXH(t), fYL(t) and fYH(t) respectively. A survivor function of random
variable T is defined as

S(t) = P(T > t) =


∞

t
f (t ′)dt ′ = 1 − F(t). (1)

The Survivor Interaction Contrast (SIC) function of the total re-
action time T (later we use T with subscripts to denote reaction
times of single process) is defined as

SIC2(t) = (SLL(t) − SLH(t)) − (SHL(t) − SHH(t)). (2)
The superscript indicates the number of processes, and subscripts
are used to denote the salience level of each process. For exam-
ple, SLL(t) indicates the survivor function of RT for the condition in
which both process X and Y are of low salience. For simplicity, we
use∆2 to denote the double differences over the factor level, hence
Eq. (2) becomes SIC2(t) = ∆2

X,Y S(t). Theoretically, the observed RT
should be a combination of process completion times, with appro-
priate forms (i.e. sum,max,min, or probabilitymixture) depending
on the underlying stopping rules.

Themean interaction contrast (MIC) is also an important statis-
tic in distinguishing among certain processing types.With RT indi-
cating themean response time and the subscripts as defined above,
the MIC is given by

MIC = (RT LL − RT LH) − (RTHL − RTHH). (3)
Sternberg (1969) suggested that based on selective influence,

serial models with independent processing times would exhibit
MIC = 0. The use of MIC has later been extended to diagnose
parallel processing (Schweickert & Townsend, 1989; Townsend &
Nozawa, 1995). The SIC and MIC predictions5 of the four standard
models are shown in Fig. 1. Note that, due to the fact that the in-
tegral of the survivor function of a positive random variable is its
expected value, the interaction contrast of mean values is equal to
the integrated SIC, i.e.,


∞

0 SIC(t)dt = MIC.
Fig. 1 shows that parallel-processing SICs reveal total positivity

(i.e. the SICs are non-negative functions of t) in the case of mini-
mum time conditions (MIC > 0) but total negativity in the case
of maximum time conditions (MI < 0). On the other hand, serial
minimum time SICs are equal to zero at all time values t (MIC =

0), while simulation results have repeatedly found, in contrast, that
serialmaximum time (or serial exhaustive) SICs show a large nega-
tive portion, followed by an equally large positive portion (MIC =

0). The coactive model, based on the summed Poisson processes,
predicts that the SIC is negative for small times and then positive
for later times, much like the SIC for the serial exhaustive model.
But the negative region is always smaller than the positive region,
which leads to a positive MIC value6 (MIC > 0). Thus each of

4 A smooth function of class Ck is a function that has continuous derivatives up
to the kth order in its domain. Here the term ‘‘sufficiently smooth’’ means that the
density functions do not need to be of class C∞ , but all operations on the density
functions mentioned in this paper should be well defined.
5 For rigorous proofs of SIC predictions, see Townsend and Nozawa (1995);

Townsend and Wenger (2004).
6 Although both coactive models and parallel race models predict everywhere-

positive OR MIC results, an investigator might test them using a result of
the five models makes a unique prediction for the combination of
MIC value and SIC shape. By using both the MIC and SIC statistics,
one can differentiate between serial, parallel, and coactive archi-
tectures, as well as minimum time and exhaustive stopping rules.

As observed earlier, for the case of serial exhaustive process-
ing, Townsend andNozawa (1995) proved that the SIC function be-
gins negative but must be positive for substantial values of t > 0.
In fact, the summation of the positive portion of SICs is equal to
the summation of the negative portion, since the mean interaction
contrast must be zero. However, it does not follow from the exist-
ing proofs that the SIC must be the 1-wiggle S-shape function as
found in the simulations of Fig. 1.

Can it be demonstrated that the 1-wiggle SIC behavior applies
to all distributions when convolved to produce serial exhaustive
predictions? This might seem rather unlikely given that, in prin-
ciple the underlying distributions are arbitrary. Are there non-
trivial conditions that are necessary and/or sufficient to elicit the
1-wiggle portrait? In attempting to answer these questions, we
have first of all discovered novel aspects of generalwiggle behavior
not only for the involved processes of n = 2 but for arbitrary n ≥ 2.

We are now prepared for our first theoretical result.

2.3. Theoretical propositions

Although we know from previous work (Townsend & Nozawa,
1995) thatwigglesmust exist for 2-stage serial exhaustive process-
ing, we do not know howmany in general we should expect. Then
our first result demonstrates that for any underlying processing
distributions in series, the number of crossovers of 2-stage serial
exhaustive SIC must be an odd number.7

Proposition 2.1. Assume selective influence. The independent serial
exhaustive SICmust have an odd number of crossovers with horizontal
axis in the interval (0, +∞).

Proof. The overall RT in serial exhaustive models should be the
summation of the completion times of two processes X and Y ,
i.e., T = TX + TY . Since we assume that two channels process in-
dependently, we can write the survivor interaction contrast as

SIC2
ser.AND(t) = ∆2

X,YP(TX + TY > t)

= −∆2
X,Y

 t

0
FX (t − ty) × fY (ty)dty

= −

 t

0


FXL(t − ty) × fYL(ty) − FXL(t − ty) × fYH(ty)

− FXH(t − ty) × fYL(ty) + FXH(t − ty) × fYH(ty)

dty

= −

 t

0


[FXH(t − ty) − FXL(t − ty)]

×[fYH(ty) − fYL(ty)]

dty. (4)

Because of the action of selective influence on the survivor func-
tions, the firstmultiplicand under the integral sign is non-negative.
Further,when selective influence operates at the one-point density
crossover level, the secondmultiplicandwill be positive for t < t∗,
where t∗ represents the density crossover point. Thus SIC function
must be negative for small times t < t∗.

To show that there are odd number crossovers, we need to
demonstrate that when t → ∞, the SIC2(t) must converge to zero

Schweickert and Wang (1993). Namely, if the factor levels are increased over a
sufficiently large range, parallel race models predictions will approach a MIC limit
whereas coactive models predictions will not.
7 In this paper, we restricted our discussion to finite-zero cases, i.e., the number

of crossovers of SIC would be either even or odd.
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from the positive side. Let DFX (t) = FXH(t) − FXL(t), DfY (t) =

fYH(t) − fYL(t). Because of the property of commutativity of con-
volution, we can rewrite SIC2(t) as

SIC2
ser.AND(t) = −

 t

0
DFX (t − ty) × DfY (ty)dty

= −

 t

0
DFX (ty) × DfY (t − ty)dty. (5)

Denote I2(s) =
 s
0 SIC2

ser.AND(t)dt . By Fubini’s theorem,

I2(s) = −

 s

0

 t

0
DFX (ty) × DfY (t − ty)dtydt

(Change the order of integration)

= −

 s

0

 s

ty
DFX (ty) × DfY (t − ty)dtdty

(Definition of density function)

= −

 s

0
DFX (ty) × DFY (s − ty)dty. (6)

Because of the action of selective influence on the survivor func-
tions, both DFX (t) and DFY (t) are positive, thus I2(s) is negative.
Another fact about I2(s) is that it goes to zero when s → ∞ (re-
call that I2(∞) = MIC). Combining these two facts together we
see that I2(s) must increase toward zero from the negative side at
the end. Thus the derivative of I2(s), i.e. SIC2(s), must be positive
as long as s is large enough.

Having shown that the SIC function is negative for small time
values and positive when it approaches to zero at the end, the im-
plication is that the SIC must have an odd number of crossovers in
(0, +∞). �

Many simulations with differing distributions have intimated
that perhaps the odd number of crossovers might typically just be
1. It is next proven that a satisfyingly weak condition ensures that
thiswill be the case. However, first a brief discussion of the relevant
history is in order.

From Eq. (5) we see that the serial exhaustive SIC curve is a con-
volution of the difference in probability density functions, of the
high salience minus the low salience on the X factor, and the dif-
ference in cumulative distribution functions of the high salience
minus the low salience on the Y factor. Further, the integral of the
SIC2(t) with variable upper limit, i.e., I2(s), is also a convolution,
of two functions which are the two differences in cumulative dis-
tribution functions on X and Y factor respectively. For many years,
it was thought that a condition of unimodality8 of such functions
was enough to produce our needed result of a single 0-crossing.
This was eventually found to be false. That is, it can be shown that
unimodality of both functions in the convolution is not sufficient to
imply unimodality of the integral (Chung, 1953). In contrast, Ibrag-
imov (1956) proposed and demonstrated that the convolution of
any two unimodal functions will be still unimodal, if at least one of
them is logarithmic concave (so called strong unimodal).9

Proposition 2.2. Assume selective influence. The independent serial
exhaustive SIC crosses the time axis only once in the interval (0, +∞),
if either FXH(t) − FXL(t) or FYH(t) − FYL(t) is strictly log-concave.

8 Different sources have slightly different definitions for a unimodal function.We
shall use the following: a mode of a function f is a number a such that (a). f is non-
decreasing on (−∞, a] and (b). f is non-increasing on [a, ∞). f is unimodal if it has
a mode. f is strictly unimodal if it has a single mode.
9 ‘‘Concavity’’ of an increasing curvemeans that it bends downward as it ascends,

implying a so-called ‘‘negative second derivative’’ in elementary calculus. ‘‘Log-
concavity’’ then simply means that the logarithm of the function rather than the
function itself is concave.
Proof. Let DFX (t) = FXH(t)− FXL(t), DFY (t) = FYH(t)− FYL(t). Also
let DfX (t) = fXH(t) − fXL(t), DfY (t) = fYH(t) − fYL(t). Assume that
the two processing time density functions at the two factor levels
(fXL(t) and fXH(t); fYL(t) and fYH(t)) cross exactly once, thus both
DFX (t) and DFY (t) are strictly unimodal. Suppose DFY (t) is strictly
log-concave. Assume also, for themoment, thatDFY (t) has support
(−∞, ∞), i.e., DFY (t) ≠ 0 for all t ∈ (−∞, ∞) (we will remove
this assumption later). We show that the SIC2(t) has only one 0-
crossing for any DFX (t). This proof is based on Chapter 1 of Dhar-
madhikari and Joag-Dev (1988).

Since convolution commutes with translations, we assume,
without loss of generality, that DFX (t) is unimodal about 0, i.e.,
DfX (t) > 0 for t < 0 and DfX (t) < 0 for t > 0. Recall from Eq. (5)
that SIC2

ser.AND(t) = −


∞

−∞
DfX (ty) × DFY (t − ty)dty. Then for any

t , z such that t < z, we have

SIC2
ser.AND(z) = −


∞

−∞

DfX (ty)
DFY (z − ty)
DFY (t − ty)

× DFY (t − ty)dty. (7)

Since DFY (t) is strictly log-concave, DFY (t + δ)/DFY (t) is de-
creasing in t if δ > 0 and increasing in t if δ < 0. Therefore,

DFY (z − ty)
DFY (t − ty)

<
DFY (z)
DFY (t)

if ty < 0

and

DFY (z − ty)
DFY (t − ty)

>
DFY (z)
DFY (t)

if ty > 0. (8)

But we also know that DfX (t) > 0 for t < 0 and DfX (t) < 0 for
t > 0. Consequently Eq. (7) shows that

SIC2
ser.AND(z) > −

DFY (z)
DFY (t)


∞

−∞

DfX (ty)DFY (t − ty)dty

=
DFY (z)
DFY (t)

× SIC2
ser.AND(t). (9)

Thus SIC2
ser.AND(t) = 0 ⇒ SIC2

ser.AND(z) > 0 for all z > t .
Therefore, SIC has only one 0-crossing and correspondingly, I2(s)
is strictly unimodal.

The condition that DFY (t) is never zero can be removed by con-
structing a series of strictly log-concave functions DF (m)

Y (t) that all
have support (−∞, ∞) and converge to DFY (t).10 Thus I2(m)(s) =

−
 s
0 DFX (ty) × DF (m)

Y (s − ty)dty is strictly unimodal by the above
proof. Since the class of strictly unimodal distributions on R is
closed under weak limits (Dharmadhikari & Joag-Dev, 1988, page
3), let m → ∞, I2(s) is strictly unimodal,11 and SIC2(s) has only
one 0-crossing. �

We should notice that Proposition 2.2 provides a sufficient but
not necessary condition for the single 0-crossing property of the
SIC function. Hence even when both DFX (t) and DFY (t) are not
strictly log-concave, it is possible that the SIC function still has
only one 0-crossing point. Does this result mean that the ‘‘log-
concavity’’ condition is too far from necessary regarding this prob-
lem? The answer is no. As indicated in Ibragimov (1956), for any
unimodal function that is not log-concave, there exists another
unimodal function such that the convolution of the two functions is
multi-modal. In otherwords, for anyDFX (t) that is not log-concave,
we can find a DFY (t) such that the corresponding SIC function has
more than one zero.

10 For readerswho are interested in the details,we recommemd (Dharmadhikari &
Joag-Dev, 1988), page 21, in which they show how to approximate the log-concave
function g supported in [a, b] by the sequence g(m) supported in (−∞, ∞).
11 Although (Dharmadhikari & Joag-Dev, 1988) demonstrated their theorem with
distributions, we can easily apply their result to our functions by rescaling I2(m)(s).
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Fig. 3. An example of 2-stage serial exhaustive SIC function that has three 0-crossing points. Graphs include the density functions (top left), the difference of the two
corresponding survivor functions (top right), the SIC function (bottom left), and the integral of the SIC function with variable upper limits (bottom right).
We demonstrated the existence of multi-zero SICs by simula-
tions. Completion times on processes were generated for both low
and high salience regarding the following rules: 1. For simplicity,
we let completion times on processes X and Y have the same dis-
tribution form, i.e., FXL(t) = FYL(t), FXH(t) = FYH(t). Thus DFX (t) =

DFY (t). 2. The completion times under the two salience conditions
are both mixtures of uniform and Gaussian distributions with dif-
ferent parameters designed so that the two density functions at the
two factor levels cross exactly once and the corresponding DF(t) is
unimodal (but not log-concave). The simulation results are shown
in Fig. 3. The top panel shows the two density functions for the low
and high conditions on the left and the DF(t) on the right. The bot-
tom left panel shows the SIC function calculated by taking the dou-
ble differences of survivor functions from the top left panel, and the
bottom right panel shows the result of the convolution of −DFX (t)
andDFY (t), which is also the integral of the SIC function, aswe indi-
cated in the proof above. Aswe predicted, the convolution function
in the bottom right has three (rather than one) turning points, and
correspondingwith this is that the SIC function on the left has three
0-crossing points. Also note that in the limit, the convolution func-
tion in the bottom right equals 0 as it should, indicating the MIC is
still 0 as it should be due to seriality. This simulation supports our
finding that when losing the property of log-concavity, the serial
exhaustive SIC function may exhibit three non-trivial zeros.

It was intimated in the previous section that the condition of
log-concavity is not very restrictive. This claim is supported by con-
sidering a simple power function (such as assumed in S.S. Steven’s
famous law): y = AxB, where A and B are positive constants, x is the
independent, and y the dependent variable. For B ≥ 2, this function
is positively accelerated, that is, is convex with the acceleration
increasing with B. Yet, however large B may be, it is always log-
concave, since log(y) = log(A) + B × log(x) which is always con-
cave. And as observed, many commonly used distributions obey
this caveat, such as the normal distribution, the exponential distri-
bution, and the gamma distribution with shape parameter P ≥ 1,
etc. Proposition 2.2 therefore strongly suggests that we should not
be astonished to discover a single 0-crossing when processing is
serial with an exhaustive stopping rule.

Nonetheless, as mentioned earlier, the SIC has so far been re-
stricted to the n = 2 case. This fact is of more than simple techni-
cal interest, since it has excluded the methodology from the larger
numbers of items or processes which are often used in perceptual
and cognitive experiments. The next part of this paper is devoted to
generalizing the knowledge base of the SIC signatures to arbitrary
values of n.
3. Fundamental architectural signatures for an arbitrary num-
ber of processes

How the two basic architectures, parallel and serial with vary-
ing stopping rules behave for n > 2 processes will be explored in
this section. Before digging into the detail of the extended theory,
we first introduce a measure, which is analogous to the SIC2(t) in
Eq. (2), but in a more general form. It will be evident that the com-
plete factorial design can be erected by a recursive embedding in
higher and higher values of n, as indicated when n = 3. The SIC
function of total reaction time T in 3-process case produces the ex-
pression
SIC3(t) = [(SLLL(t) − SLLH(t)) − (SLHL(t) − SLHH(t))]

−[(SHLL(t) − SHLH(t)) − (SHHL(t) − SHHH(t))] (10)
where superscript indicates the number of processes and sub-
scripts are used to denote the salience level of each process. For
example, SLLL(t) indicates the survivor function of RT for the con-
dition inwhich all three processes are of low salience. Note that the
factorial combination of three factors with their two salience lev-
els leads to eight experimental conditions, thus the SIC function in
3-process case is composed of eight items. An abstract formwhich
is equivalent to Eq. (10) is as follows: SIC3(t) = ∆3

X1,X2,X3
S(t),

where Xi represents the process i. This form of SIC function can be
straightforwardly generalized to the case for arbitrary n processes:
let us denote the individual process as Xi, i = 1, 2, . . . , n, thus the
SIC function in the n-process case could be written as

SICn(t) = ∆n
X1,...,XnS(t) (11)

in which ∆n
X1,...,Xn

represents the n-order mixed partial difference
over the factor levels. Analogous to the 3-process SIC which con-
tains 23 items, the n-process SIC function is composed of 2n sur-
vivor functions.

Now we are ready to present the theoretical results for n > 2.
Our goal is to demonstrate that for the two major stopping rules,
minimumandmaximumprocessing times, the results for arbitrary
n are close relatives to those for n = 2 in the case for both parallel
and serial systems.12 Here we employ mathematical induction in
the proofs.Mathematical induction is usually used to establish that
a given statement is true for all non-negative integers. It could be
done by proving that the first statement in the infinite sequence

12 We limit our scope on pure serial and parallel systems. Mixed system of serial
and parallel is not addressed in this paper.
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of statements is true, and then proving that if the first N (any
arbitrarily chosen number) statements in the infinite sequence of
the statements are true, then so is the next one.

We begin with the basic parallel horse race—independent par-
allel processing and a minimum time stopping rule.

3.1. Parallel minimum time processing

In the case for n = 2, the SIC is always positive. Proposition 3.1
reveals that this is the canonical signature for all n.

Proposition 3.1. Assume selective influence. The independent paral-
lel minimum time processing predicts that the SIC curve will always
be positive as a function of time t, for every n.

Proof. Recall that without the consideration of base time, the to-
tal reaction time in parallel minimum time process models should
be the minimum of the reaction time on each process i.e, T =

min(TX1, . . . , TXn). Since we assume that two channels process in-
dependently, we have

SICn
par.OR(t) = ∆n

X1,...,XnP(min(TX1, . . . , TXn) > t)

= ∆n
X1,...,Xn [P(TX1 > t) × · · · × P(TXn > t)]

(factoring)

= [P(TXnL > t) − P(TXnH > t)]

× ∆n−1
X1,...,Xn−1

[P(TX1 > t) × · · · × P(TX(n−1) > t)]

= [FnH(t) − FnL(t)] × SICn−1
par.OR(t) (12)

where subscripts are used to denote the salience level of each pro-
cess. For example, TXnL indicates the RT for the condition in which
the nth process is of low salience, FnL indicates the correspond-
ing marginal CDF. Because of the action of selective influence on
the survivor functions, FnH(t) > FnL(t) for all t . Since SIC2

par.OR(t)
is always positive (Townsend & Nozawa, 1995), we can infer
that SICn

par.OR(t) is always positive, by simple mathematical induc-
tion. �

It is interesting that the sign of the parallel horse race SIC func-
tion is always positive as n is varied. We will learn that this does
not inevitably occur in a parallel system when considering differ-
ent stopping rules. The next proposition treatsmaximum time par-
allel processing.

3.2. Parallel maximum time processing

When n = 2, the SIC function is always negative. From the
above proposition with minimum time processing we might ex-
pect an analogous invariance with a maximum time (i.e., exhaus-
tive processing) stopping rule. Intriguingly, this expectation is not
fulfilled as the following proposition reveals.

Proposition 3.2. Assume selective influence. The independent paral-
lel exhaustive processing predicts underadditivity in the survivor func-
tion when an even number of channels are processed, and predicts
overadditivity when an odd number of channels are processed.

Proof. Without the consideration of base time, the total reaction
time in parallel exhaustive process models should be the maxi-
mum of the reaction time on each process, i.e., T = max(TX1, . . . ,
TXn). Thus, we have

SICn
par.AND(t) = ∆n

X1,...,XnP(max(TX1, . . . , TXn) > t)

= ∆n
X1,...,Xn [1 − P(max(TX1, . . . , TXn) 6 t)]

= −∆n
X1,...,XnP(max(TX1, . . . , TXn) 6 t)
= −∆n
X1,...,Xn [P(TX1 6 t) × · · · × P(TXn 6 t)]

(factoring)

= −[P(TXnL 6 t) − P(TXnH 6 t)]

× ∆n−1
X1,...,Xn−1

[P(TX1 6 t) × · · · × P(TX(n−1) 6 t)]

= [FnL(t) − FnH(t)] × SICn−1
par.AND(t). (13)

Because of the action of selective influence on the CDF, FnL(t) <
FnH(t) for all t . As we know that SIC2

par.AND(t) is negative, we can
infer that SICn

par.AND(t) is negative when n is even and is positive
when n is odd. �

This flip-flopping of the SIC function according to whether n is
odd or even, and only for the exhaustive stopping rule, is quite sur-
prising and should be highly useful in identifying mental architec-
tures.

We next resume our investigation of serial systems with the
same two stopping rules; minimum time first.

3.3. Serial minimum time processing

Recall that in the case of serial processing, a minimum time
stopping rule is simplicity itself — the very first completion brings
processing to a halt. This simplicity, reinforced with selective in-
fluence, extracts a strong result.

Proposition 3.3. Assume selective influence. The independent serial
minimum time processing predicts that the SIC will always be zero as
a function of time t, for every n.

Proof. The total reaction time in serial minimum time process
models should be the reaction time of the process chosen to be the
first one processed. Let pi denote the probability of processing the
ith item first. Then the survivor function on the total reaction time
can be expressed as

S(t) = P(T > t)

=

n
i=1

P(T > t|T = TXi) × P(T = TXi)

=

n
i=1

pi × P(TXi > t). (14)

Due to the complete factorial design, the n-process SIC function is
composed of 2n survivor functions, and all items will cancel each
other out in the ensuing contrast function. Thus, the minimum
time stopping rule leads immediately to a decisive, and invariant
prediction. �

3.4. Serial maximum time processing

One of the most intriguing architectural signatures of the SIC
curvewhen n = 2 is that of serial exhaustive processing, exhibiting
as it does the presence of wiggles above and below zero. As
we would expect, for arbitrary n, the mean interaction contrast
for a serial process with an exhaustive stopping rule must be 0
due to the additivity of the processing times along with selective
influence. The following proposition confirms this result using
survivor functions but it also follows almost immediately from the
foregoing statement.

Proposition 3.4. Assume selective influence. The independent serial
exhaustive processing predicts that the integral of the SIC function is
always equal to zero, for every n.

Proof. Without the consideration of base time, the total reaction
time in serial exhaustive process models should be the sum of the
reaction time on each process, i.e., T = TX1 + · · · + TXn. We reveal
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the relationship between the n-stage SIC function and the (n− 1)-
stage SIC function as below

SICn
ser.AND(t) = ∆n

X1,...,XnP(TX1 + · · · + TXn > t)

= −∆n
X1,...,XnP(TX1 + · · · + TXn 6 t)

= −∆n
X1,...,Xn

 t

0
[fn(tn)

× P(TX1 + · · · + TX(n−1) 6 t − tn)]dtn



= −

 t

0
∆n

X1,...,Xn


[fn(tn)

× P(TX1 + · · · + TX(n−1) 6 t − tn)]

dtn

(factoring)

= −

 t

0


[fnL(tn) − fnH(tn)]

×[∆n−1
X1,...,Xn−1

P(TX1 + · · · + TX(n−1) 6 t − tn)]

dtn

= −

 t

0


[fnH(tn) − fnL(tn)]

× SICn−1
ser.AND(t − tn)


dtn. (15)

Notice that SICn
ser.AND(t) is a convolution. By Fubini’s theorem, the

integral of the convolution of two functions on the whole space is
simply obtained as the product of the integrals of each function,
thus the integral of the SIC function on the whole space could be
rewritten as

∞

0
SICn

ser.AND(t)dt = −


∞

0

 t

0
[fnH(tn) − fnL(tn)]

× SICn−1
ser.AND(t − tn)dtn


dt

= −


∞

0
[fnH(t) − fnL(t)]dt

×


∞

0
SICn−1

ser.AND(t)dt. (16)

Since both fnH(t) and fnL(t) are density functions, the first integral
of the above equation is always zero. Thus for every n, the integral
of the SIC function of serial exhaustive model is predicted to be
zero. �

The next proposition indicates that the SIC function will flip
over when the number of processes changes from even to odd and
vice versa.

Proposition 3.5. Assume selective influence. The independent serial
exhaustive processing predicts that the SIC function must be negative
for small times if n is even, and it must be positive for small times if n
is odd.

Proof. It is easy to confirm this statement when we examine
the relationship between SICn

ser.AND(t) and SICn−1
ser.AND(t) shown in

Eq. (15). Notice that the difference between the two density func-
tions should be positive for small t because of selective influence
at the density crossing level. Thus, when t is small, SICn

ser.AND(t) and
SICn−1

ser.AND(t) have different signs, because of the negative sign be-
fore the integral in the above equation. �
Propositions 3.4 and 3.5 provide us some key properties of the
SIC functions for serial exhaustive models, from which we garner
some idea about how the SIC signatures behave, and how they as-
sist in identification of the architectures and stopping rules. With
regard to the further analysis of SIC curves, recall that in the previ-
ous section, we discovered that in the n = 2 case, a mild assump-
tion of log-concavity guarantees that there is only a single wiggle
through zero. Thus an intriguing question asks how many zeros
there will be in SICn

ser.AND(t)? Is there any trend we can discover as
n increases? The following discussion shows that the answer to all
these questions depends on the analytic character of the function.
For functions of certain form, the zeros of SICn

ser.AND(t)will increase
by 1 as n increases by 1.

Next, it may be remembered that in the previous sectionwe de-
termined the zeros of SIC2

ser.AND(t) via the shape of its integral. Here,
we again explore the integral of SICn

ser.AND(t) for the same purpose.
Let In(s) denote the integral of SICn

ser.AND(t) with variable upper
limit. Eq. (17) reveals the relationship between In(s) and In−1(s),
which eventually has the same convolution form as the relation-
ship between SICn

ser.AND(t) and SICn−1
ser.AND(t).

In(s) = −

 s

0

 t

0
[fnH(tn) − fnL(tn)] × SICn−1

ser.AND(t − tn)dtn


dt

(Change the order of integration)

= −

 s

0

 s

tn
[fnH(tn) − fnL(tn)] × SICn−1

ser.AND(t − tn)dt


dtn

= −

 s

0


[fnH(tn) − fnL(tn)] ×

 s

tn
SICn−1

ser.AND(t − tn)dt


dtn

= −

 s

0


[fnH(tn) − fnL(tn)] × In−1(s − tn)


dtn. (17)

Recall that with the assumption of log-concavity, I2(s) is a uni-
modal function. So following the proof in Proposition 2.2, we as-
sert that I3(s) is a one-wiggle S-shape function, just as SIC2

ser.AND(t),
if FX3H(t) − FX3L(t) is strictly log-concave. More generally, with
the assumption of strictly log-concavity of DFXi, we can infer that
In(s) should have the same key signature as SICn−1

ser.AND(t) by sim-
ple math induction. Now the problem of convolution converts to
the operation of taking the derivative, that is, how the number of
0-crossings change from SICn−1

ser.AND(t) to SICn
ser.AND(t) converts to

the question of how that number changeswhenwe take thederiva-
tive of In(s). Unfortunately, there appears to be no uniform answer
for that question. In fact, for some particular functions such as the
Gaussian density function the outcome is pleasant since the nth
derivative would have n zeros, which leads to the result that zeros
of SICn

ser.AND(t) will increase by 1 as n increases by 1.
However, in the general case, the question of the number of

zeros of the derivatives could be a quite complicated issue due to
the flexible forms of the distributions. As a result, although our
hypothesis that zeros would increase by 1 as n increases has been
observed in simulations, theoretical analysis suggests that this
hypothesis could be violated, especially when n is a large number.

Fig. 4 exhibits simulation results which document the key sig-
natures of the varying SIC functions. Briefly, Fig. 4 first depicted the
fact that parallel minimum time processing models always predict
an entirely positive SIC function (first column). Secondly, the curi-
ous flip flopping of the parallel exhaustive systems from positive
to negative as n goes from odd to even is shown in the second col-
umn. Thirdly, the absolute invariance of the minimum time serial
processingmodels’ prediction that the entire curve is identical to 0
appears in the third column of panels. Finally, the fascinating mul-
tiplying of the wiggles in the serial exhaustive systems as n grows
is illustrated in the fourth column of Fig. 4.
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Fig. 4. Predicted survivor interaction contrast forms for Parallel-OR (first column), Parallel-AND (second column), Serial-OR (third column) and Serial-AND (fourth column)
processing models, for varying n from 2 to 4 (top to bottom). Simulations are based on Gamma distribution.
4. Exemplary experiment

In a typical short-termmemory search task, a small set of items
is quickly memorized, and then it is followed by the presentation
of a target. Participants are required to indicate, by pressing either
the ‘yes’ or ‘no’ button, whether the target was in the memory set.
The major interest of the task is to see whether the comparisons
of target and memory set items were carried out in serial or in
parallel. The data we present below come from an earlier short-
termmemory search study inwhich the size of thememory setwas
manipulated (n = 2 or 4). The details of the experiment design and
the results for n = 2 condition have been reported in Townsend
and Fifić (2004), in which they revealed that different individuals
may evince either parallel or serial processing. In this paper we
take one participant whose data in the n = 2 condition strongly
support serial processing for example, and we focus on his data
in the n = 4 condition. With a larger memory set of size 4, we
might expect to seemore and consistent evidence to support serial
processing. The n = 4 design also allows for examination of wiggle
behavior of the observed SIC functions.

4.1. Method

The task was carried out in Belgrade, using stimuli crafted from
Serbian linguistic features. Five participants were recruited for the
experiment. Each participant participated in both the n = 2 and
n = 4 conditions. A total of 12 stimuli were constructed and they
were all pseudo Serbian words in consonant–vowel–consonant
form. In the experiment, each trial consisted of a fixation point
and warning low-pitch tone for 1 s, successive presentation of two
or four items in the memory set for 1200 ms, an interstimulus
interval (ISI), and a target. Participants were required to indicate,
by pressing either the ‘yes’ or ‘no’ button,whether the targetwas in
the memory set or not. The ISI was also manipulated, ISI = 700 or
2,000 ms. In the n = 4 task, participants were run for 44 blocks of
128 trials for each ISI condition, and theywere required to respond
as fast as they could without compromising accuracy. Target items
and memory-set items were manipulated across trials to produce
low and high levels of item-target dissimilarity. For examples of
stimuli andmore details on the experimental setup, see Townsend
and Fifić (2004).

4.2. Data analysis

Our analyses focused only on target-absent trials. As in
Townsend and Fifić (2004), the experimental factor for each dis-
tractor item (which coincided with a stage in serial processing or
a channel in parallel processing) was its similarity to the target.
This type of manipulation should permit selective influence on
exhaustive (‘no’) trials but could introduce confounds on single-
target, self-terminating (‘yes’) trials. Naturally, on target-absent
trials, participants must exhaustively process all four comparisons
of target and memory set items to guarantee a correct response.

To implement the double factorial paradigm,we conducted two
levels of item-target dissimilarity. High dissimilarity was desig-
nated as the high salience condition and low dissimilarity was des-
ignated as the low salience condition. Thus the factors of interests
were positions of item in the set (1, 2, 3, 4) × phonemic similarity
(low, high). The factorial combination of four factorswith their two
salience levels leads to sixteen experimental conditions (2 × 2 ×

2 × 2). For instance, LHHH indicates a condition in which the first
factor is of low salience and all other factors are of high salience.
Simpler embedded factorial designs can be derived from the full
design by reducing the number of factors. For instance, from the
four-target design it is possible to obtain 4 three-target designs,
by dropping out any of the positional factors. Thus, the following
will be obtained: x234, 1x34, 12x4 and 123x. The ‘x’ denotes posi-
tion that was dropped out from the analysis. Similarly, excluding
yet another factor would derive 6 two-target designs: xx34, x2x4,
x23x, 1xx4, 1x3x, 12xx. In other words, merging selected factors
allow us to analyze the underlying architecture of any two, three
or four mental processes within one experiment.

Townsend and Fifić (2004) working with n = 2, discovered
individual differences and, for some participants, the influence of
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Table 1
Results of the Kolmogorov–Smirnov test applied to the full task.

hhhh lhhh hlhh hhlh hhhl llhh lhlh lhhl hllh hlhl hhll lllh llhl lhll hlll llll

hhhh >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

lhhh − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

hlhh − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

hhlh − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

hhhl − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

llhh − − − − − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

lhlh − − − − − >∗∗∗ >∗∗∗ >∗∗ >∗∗∗ >∗∗∗

lhhl − − − − − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

hllh − − − − − >∗∗∗ >∗∗∗ >∗∗ >∗∗∗ >∗∗∗

hlhl − − − − − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

hhll − − − − − >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗ >∗∗∗

lllh − − − − − − − − − − − >∗∗∗

llhl − − − − − − − − − − − >∗∗∗

lhll − − − − − − − − − − − >∗∗∗

hlll − − − − − − − − − − − >∗∗∗

llll − − − − − − − − − − − − − − −

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
>∗∗∗: max(FHHHH (t) − FLHHH (t)) is significant, p < 0.01, etc.
−: max(FLHHH (t) − FHHHH (t)) is not significant, etc.
the ISI betweenmemory-set presentation and the probe. However,
all the SIC functions decisively adhered to either a serial or paral-
lel form. To demonstrate the use of the new theories for revealing
architecture for multiple processes, we take one participant (Par-
ticipant 1 in Townsend and Fifić (2004)) whose data consistently
support serial processing as an example of our new theoretical re-
sults. We were therefore curious to examine behavior for larger
n, particularly since most memory search experiments are based
on n > 2. We were also keen to test the within-architecture pre-
dictions concerning behavior as the number of processes altered
across n = 2, 3, 4, utilizing the above ‘factor reduction’ strategy.

Evidence of selective influence was first assessed by a two-
sample Kolmogorov–Smirnov test. As noted earlier, selective influ-
ence implies that the reaction time when the target is low salience
is stochastically larger than the reaction time when the target is
high salience. In other words, it implies that the distribution func-
tions of RT should exhibit a stochastic ordering across conditions.
In the two-sample Kolmogorov–Smirnov test, the null hypothesis
is that the twoempirical distributions are equal, and the alternative
hypothesis is that the two distributions are different, in the sense
that the maximum of the difference between two distributions
is significantly large. To test for illegitimate cumulative distribu-
tion function crossings (logically equivalent to crossings of the sur-
vivor functions), we applied the one-sided Kolmogorov–Smirnov
test twice on each pair of conditions to assess selective influence
as is common practice (e.g., Townsend & Nozawa, 1995). For in-
stance, when assessing the selective influence between the con-
ditions HHHH and HHHL, we require that max(FHHHH − FHHHL) is
significant and max(FHHHL − FHHHH) is not significant.

Next, the architecture and stopping rule first assessed by the
adjusted rank transform (ART; Sawilowsky (1990)) test. The ART
test is a nonparametric test for an interaction between twodiscrete
variables. We apply it to distinguish serial versus parallel mod-
els. The null hypothesis is that there is no interaction between the
salience manipulations on each process, so rejecting the null hy-
pothesis falsifies serial models (MIC = 0). The architecture and
stopping rule were additionally examined by a nonparametric sta-
tistical test of SIC, which was recently developed by Houpt and
Townsend (2010). This test performs two separate null hypothe-
sis tests with a D-statistic: One is for testing whether the empirical
SIC function (ESIC) has a significant positive deviation from zero,
and the other is pertinent to testing whether the ESIC has a signifi-
cant negative deviation from zero. Referring to Fig. 1, rejecting the
null hypothesis of the first test falsifies serial-OR and parallel-AND
models, whereas rejecting the null hypothesis of the second test
falsifies serial-OR and parallel-OR models. It may be observed that
the significance test of SIC function cannot presently distinguish
a serial-AND model from a coactive model, since both models are
expected to have a significant positive deviation and a significant
negative deviation. Thus combining the statistical test of SIC with
the ART test is necessary. For more details of the statistical test of
SIC, see Houpt and Townsend (2010).

4.3. Result

Selective influence. The Kolmogorov–Smirnov tests were ap-
plied to each pair of high versus low salience conditions in the full
task. Table 1 shows the K–S results for the participant: As shown
in Table 1, in every case where an order was predicted, the appro-
priate ordering was supported, either at the p = 0.01 or p = 0.05
level. Additionally, non-significant results were found for each pair
of conditions with the application of the inverse direction.

Architecture and stopping rule. The empirical SIC (ESIC) func-
tions for the same participant are plotted in Fig. 5. The top figure
displays the four-target ESIC function (n = 4), the middle row
shows four reduced three-target ESICs (n = 3), and the bottom row
of the Fig. 5 shows a total of 6 two-target ESICs (n = 2). The statis-
tical tests were applied to analyze the n = 2 ESIC functions, with
results summarized in Table 2. The first column in Table 2 shows
the statistical results of the ART test, and the rest of the table ex-
hibits the maximum deviations from the statistical test of ESIC.

As can be seen in the last column of Table 2, all of the sixmodels
revealed a significant deviation of the ESIC (p < 0.01). Hence, we
can reject the null hypothesis that the true SIC is flat. Furthermore,
five of the sixmodels exhibited a non-significant result in their ART
test. This result provides evidence supporting serial models. This
observation, together with the significant result of ESIC, provides
strong evidence in favor of serial-AND processing that is consistent
with our hypothesis. There is only one exception, the model x2x4,
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Fig. 5. ESIC(t) for one participant. The top row is the ESIC for the original 4-target task. The middle and bottom rows are the ESICs estimated from the reduced 3-target and
2-target tasks, respectively.
Table 2
Results of the SIC and the ART test statistics applied to the data from the reduced
2-target tasks.

Model ART D+ D− D = max(D+,D−)

xx34 0.013 0.033 0.150*** 0.150***

x2x4 13.001*** 0.117*** 0.116*** 0.117***

1xx4 0.053 0.048 0.113*** 0.113***

x23x 0.894 0.056 0.128*** 0.128***

1x3x 1.801 0.091 0.123*** 0.123***

12xx 0.046 0.071* 0.166*** 0.166***

* p < 0.1** p < 0.05.
*** p < 0.01.

exhibiting a significant result of the ART test, which implies a
possible interaction between processes 2 and 4. Since both D+ and
D− are significant from zero (D+

= 0.117, D−
= 0.116, p < 0.01),

unfortunately we cannot rule out the coactive model as a model of
processing in this case (see Fig. 1, right panel).

The current SIC statistical tests for significance are limited by
their confinement to n = 2. For n > 2, however, even without sta-
tistical tools, we can nevertheless assay the qualitative form of the
ESIC signatures. In fact, as we can see, the signatures of ESIC when
n = 3 exhibits clear M-shaped patterns. Each ESIC was positive for
early processing times and negative in the middle, and go up again
for the later processing times. Those M-shaped patterns provide
preliminary evidence for a three-stage serial AND processing. The
top 4-target ESIC function appears to cross the x-axis at least twice
although crossings at the tail are rather minuscule. The 4-target
ESIC function does start negative, and then becomes positive, and
then appears to wiggle.

Moreover, for each of the ESIC functionswe observed equal pos-
itive and negative areas, confirming the prediction of serial AND
model. Intriguingly, the ESIC functions further appear to obey the
flip-flopping propertywhen the number of processes changes from
even to odd. Thuswe tentatively infer that this participant searches
her/his short-term memory serially for up to 4 memory items.

5. Summary and discussion

This paper expands the knowledge base concerned with identi-
fication of the simple but crucial architectures referred to as serial
and parallel processing along with two major decisional stopping
rules. As in almost all of our developments on these topics, the pre-
dictions have been entirely distribution free. This attribute renders
the related diagnostic tests more robust and permits the testing
(e.g., falsification) of entire classes of models. The present devel-
opments continue that tradition.

The SIC behavior of parallel processing in league with the ma-
jor stopping rules and for n = 2, has been definitively established
since 1995 (Townsend & Nozawa, 1995). Likewise, minimum pro-
cessing time serial signatures were already known for n = 2.
However, in the important case of serial exhaustive processing, the
exact form of the SIC signature has been unclear, even for n = 2.
The early results showed that it must start negative (i.e., for small
time values, t), express positive areas as well and that the positive
plus negative areas must equal zero. Many simulations and some
experimental data (Fific, Little, & Nosofsky, 2010; Fific, Nosofsky, &
Townsend, 2008; Little, Nosofsky, & Denton, 2011; Townsend & Fi-
fić, 2004) further have suggested a single 0-crossing but this prop-
erty had not been proven.

The present investigation thus began by exploring the precise
behavior of the serial exhaustive SIC function for n = 2. We found
that a single wiggle (i.e., one 0-crossing) cannot be absolutely
guaranteed since there exist probability distributions that do not
elicit that property. However, it was proven that: A. There must be
an odd number of crossings for any distributions. B. A rather mild
condition known as log-concavity is sufficient as a guarantor of a
single 0-crossing.

Up until now, there has further been a lack of knowledge
concerning how the architectural signatures act when n is varied.
The second major part of the investigation pursued this issue. The
present theoretical analysis provides this information for parallel
and serial models in conjunction with both theminimum time and
maximum time stopping rules. Although in some cases the exact
shape of the SIC curve is still unknown (e.g., the SIC for the serial
exhaustive model for n > 2) due to the flexibility of distribution
forms of the processing time, we have provided thorough analysis
specifying critical and differing traits of SIC functions under
different models that should prove vital in identifying fascinating
these elementary, but fundamental, architectures along with their
stopping rules.

The present developments significantly expand the arena
within which SFT and RT data can assay elementary architectures
and stopping rules and we anticipate their application in basic and
applied research.
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